Umbral nature of the Poisson random variables
نویسندگان
چکیده
Extending the rigorous presentation of the “classical umbral calculus” [28], the so-called partition polynomials are interpreted with the aim to point out the umbral nature of the Poisson random variables. Among the new umbrae introduced, the main tool is the partition umbra that leads also to a simple expression of the functional composition of the exponential power series. Moreover a new short proof of the Lagrange inversion formula is given.
منابع مشابه
On the bounds in Poisson approximation for independent geometric distributed random variables
The main purpose of this note is to establish some bounds in Poisson approximation for row-wise arrays of independent geometric distributed random variables using the operator method. Some results related to random sums of independent geometric distributed random variables are also investigated.
متن کاملOn umbral extensions of Stirling numbers and Dobinski-like formulas
ψ-umbral extensions of the Stirling numbers of the second kind are considered and the resulting new type of Dobinski-like formulas are discovered. These extensions naturally encompass the two well known q-extensions .The further consecutive ψ-umbral extensions of CarlitzGould q-Stirling numbers are therefore realized here in a two-fold way . The fact that the umbral q-extended Dobinski formula ...
متن کاملIntroducing the RadBioStat Educational Software: Computer-Assisted Teaching of the Random Nature of Cell Killing
The interaction of radiation with cells and tissues has a random nature. Therefore, understanding the random nature of cell killing that is determined by Poisson distribution statistics is an essential point in education of radiation biology. RadBioStat is a newly developed educational MATLAB-based software designed for computer-assisted learning of the target theory in radiation biology. Altho...
متن کاملUmbral presentations for polynomial sequences
Using random variables as motivation, this paper presents an exposition of formalisms developed in [RT1, RT2] for the classical umbral calculus. A variety of examples are presented, culminating in several descriptions of sequences of binomial type in terms of umbral polynomials.
متن کامل2 4 A ug 1 99 9 Umbral presentations for polynomial sequences
Using random variables as motivation, this paper presents an exposition of formalisms developed in [RT1, RT2] for the classical umbral calculus. A variety of examples are presented, culminating in several descriptions of sequences of binomial type in terms of umbral polynomials.
متن کامل